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Autonomous Hamiltonian systems 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 
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Symplectic Integration schemes 
Formally the solution of the Hamilton equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di. This is an integrator of order n. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  
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Symplectic Integrator SABA2C 
The operator        can be approximated by the symplectic integrator 

[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 
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The integrator has only small positive steps and its error is of order 2. 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector C, 

having a small negative step: 
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order 4. 
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Interplay of disorder and nonlinearity 

Waves in disordered media – Anderson localization 

[Anderson, Phys. Rev. (1958)]. Experiments on BEC 

[Billy et al., Nature (2008)]  

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL, 
(1993) – Molina, Phys. Rev. B (1998) - Pikovsky & 
Shepelyansky, PRL, (2008) - Kopidakis et al., PRL, (2008)] 

Experiments: propagation of light in disordered 1d 
waveguide lattices [Lahini et al., PRL, (2008)] 



The Klein – Gordon (KG) model 

  4

l

2N
22l l

K l l+1 l

l=1

p ε 1
H = + u +

1
+ u u u

24
-

2 2 W

  .
 
 
 

 chosen  uniformly froml

1 3
ε ,

2 2

with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm of the wave packet. 



Distribution characterization 

We consider normalized energy distributions in normal mode (NM) space  

of the νth NM. 
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measures the number of stronger excited modes in zν. Single mode P=1, 

Equipartition of energy P=N.  



The KG model 
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 

the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 
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The DNLS model 
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2  
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The DNLS model 
Symplectic Integrators produced by Successive Splits (SS)  
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Using the SABA2 integrator we get a 2nd order integrator with 13 

steps, SS(SABA2)2: 
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Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - Ch.S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes, δ : 

nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2~t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Different spreading regimes 



Different spreading regimes 



Crossover from strong to weak chaos 

W=4 

 

Average over 1000 realizations! 
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DNLS β= 0.04, 0.72, 3.6 KG E= 0.01, 0.2, 0.75 



Symplectic integration of 

variational equations 



Autonomous Hamiltonian systems 

Hamilton equations of motion: 

Variational equations: 

We study N degree of freedom 
autonomous Hamiltonian systems of the 

form:  

As an example, we consider the Hénon-Heiles system: 



Chaos detection methods 
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The maximum Lyapunov exponent of a given orbit characterizes the 

mean exponential rate of divergence of trajectories surrounding this orbit.  

λ1=0  Regular motion ( t-1) 

λ10  Chaotic motion 

Following the evolution of k deviation vectors with 2≤k≤2N, we define 
(Ch.S. et al., 2007) the Generalized Alignment Index (GALI) of order k : 
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Regular motion on an  

s-dimensional torus with sN : 



Tangent Map (TM) Method 

We apply the SABAC2 integrator scheme to the Hénon-Heiles system by 

using the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 

 

Use symplectic integration schemes for the whole set of equations [Ch.S. 

& Gerlach, PRE (2010) - Gerlach & Ch.S., Discr. Cont. Dyn. Sys. Supp. 

(2011) – Gerlach et al., Int. J. Bif. Chaos (2012)]  

We approximate the dynamics by the act of Hamiltonians A, B and C, 

which correspond to the symplectic maps: 



Tangent Map (TM) Method 
Any symplectic integration scheme used for solving the Hamilton 

equations of motion, which involves the act of Hamiltonians A, B and C, 

can be extended in order to integrate simultaneously the variational 

equations. 



Chaotic behavior of the 

KG model  
Ch.S., I. Gkolias & S. Flach, 2012 (in preparation) 



KG: Weak Chaos (E=0.4) 



KG: Weak Chaos (E=0.4) 



Single site excitations:  

Different spreading regimes 

KG W = 4, E = 0.4, 1.5 

Average over 20 realizations 



Block excitations:  

Different spreading regimes 

W = 4, E/L = 0.01, 0.2, 0.75 

Average over 20 realizations 



High order three part split 

symplectic integrators for 

the DNLS model  

  
Ch.S., E. Gerlach, J. Bodyfelt, G. Papamikos & S. Eggl, 2012 (in preparation) 



Three part split symplectic 

integrators for the DNLS model 

Three part split symplectic integrator of order 2, with 5 

steps: ABC2 
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This low order integrator has already been used by e.g. Chambers, MNRAS 

(1999) – Goździewski et al., MNRAS (2008). 
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2nd order integrators: Numerical results 

 



4th order symplectic integrators 

Starting with the 2nd order integrators SS(SABA2)2 and 

ABC2 we construct the 4th order integrators: 

•SS(SABA2)4 with 37 steps 

•ABC4 with 13 steps 

Starting from any 2nd order symplectic integrator S2nd, we can 

construct a 4th order integrator S4th using a composition 

method [Yoshida, Phys. Let. A (1990)]: 

4th 2nd 1 2nd 0 2nd 1

1/3

0 11/3 1/3

S (τ) = S (x τ)×S (x τ)×S (x τ)

2 1
      x = - ,       x =

2 - 2 2 - 2



4th order integrators: Numerical results 

 



Outlook 
• Disordered nonlinear lattices:  

 Quantify the chaotic behavior of energy spreading: Find theoretical or empirical laws 
for the evolution of  Lyapunov exponents. 

 Use covariant Lyapunov vectors and frequency map analysis in order to study the 
chaotic nature of energy spreading: Do ‘chaotic hot spots’ exist? 

 Determine the limiting states of wave packets. 

 Identification of the selftrapped and spreading parts of wave packets.  

 Extension to higher spatial dimensions, and interactions beyond nearest neighbors. 

 

• Three part split symplectic integrators 

 Computation of chaos indicators for the DNLS model. 

 Different techniques for constructing high order integrators. 

 Investigate the possible use of corrector terms. 

 Applications to other dynamical systems (e.g. models studied at UCT). 

 

• Chaos detection techniques 

 Behavior of GALIk indices for time dependent Hamiltonians, dissipative systems, and 
time series.  

 Computation of the spectrum of LCEs using the compound matrix theory. 

 Review paper: Comparative study of the various existing methods.  
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Summary 
• Multidimensional disordered nonlinear lattices :  

 The use of symplectic schemes allow us to follow their evolution for very long time 
intervals. 

 We predicted theoretically and verified numerically the existence of different dynamical 

behaviors: a) Weak Chaos Regime: δ<d,     m2~t1/3 , b) Intermediate Strong Chaos 

Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 , c) Selftrapping Regime: δ>Δ  

 Generality of results: a) Two different models: KG and DNLS, b) Predictions made for 

DNLS are verified for both models. 
 

• Numerical schemes based on symplectic integrators can be used for the efficient 
integration of the variational equations of multidimensional Hamiltonian systems. 

 Our results suggest that Anderson localization is eventually destroyed by the slightest 
amount of nonlinearity, since spreading does not show any sign of slowing down. 

 Energy spreading is a chaotic phenomenon, as Lyapunov exponent estimators decrease 
following an evolution different than in the case of regular motion. 

 

• Three part split symplectic integrators  

 Proved to be efficient integration methods suitable for the integration of the DNLS 
model. 

 The 4th order integrator allows integration of the DNLS model for very long times.  

 A systematic way of constructing high order three part split symplectic integrators was 
introduced.  

 

 


